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ABSTRACT
Sensitive numbers play an unparalleled role in identification and
authentication. Recent research has revealed plenty of side-channel
attacks to infer keystrokes, which require either a training phase or
a dictionary to build the relationship between an observed signal
disturbance and a keystroke. However, training-based methods are
unpractical as the training data about the victim are hard to obtain,
while dictionary-based methods cannot infer numbers, which are
not combined according to linguistic rules like letters are. We ob-
serve that typing a number creates not only a number of observed
disturbances in space (each corresponding to a digit), but also a
sequence of periods between each disturbance. Based upon existing
work that utilizes inter-keystroke timing to infer keystrokes, we
build a novel technique called WINK that combines the spatial and
time domain information into a spatiotemporal feature of keystroke-
disturbed wireless signals. With this spatiotemporal feature, WINK
can infer typed numbers without the aid of any training. Experi-
mental results on top of software-defined radio platforms show that
WINK can vastly reduce the guesses required for breaking certain
6-digit PINs from 1 million to as low as 16, and can infer over 52%
of user-chosen 6-digit PINs with less than 100 attempts.
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1 INTRODUCTION
In the digital era, identifying numbers permeate every aspect of
our daily life, particularly social security numbers (SSNs) and per-
sonal identification numbers (PINs). These numbers grant access

to highly sensitive applications and services, and their disclosure
to unauthorized parties can lead to serious consequences. A com-
promised SSN can enable identity theft in the form of fraudulent
credit card accounts [28], access to Medicaid or unemployment
insurance benefits [55], or fraudulent tax return filing and return
claims [44]. Due to the large unemployment benefit expansion dur-
ing the COVID-19 pandemic, scammers have filed huge numbers
of fraudulent unemployment claims with stolen SSNs [5].

People inevitably type those important numbers into computer
systems via a keyboard for identification and authentication under
many practical and sometimes public scenarios. For example, we
must type in our SSNs to do a credit check when filling out a
mortgage/credit card/employment application, or to set up/log into
mobile banking accounts [23]. PINs are often required to unlock
smartphones or other systems enforcing access control, including
smart doors, safe boxes, automated teller machines (ATMs), and
point of sale (POS) devices. These circumstances provide attacks
with the best opportunity to eavesdrop on these valuable numbers.

Traditional invasive keystroke eavesdropping attacks usually
require deceiving the victim’s computer system to pre-install mal-
ware, e.g., a keylogger [27], which intentionally records and sends
everything the victim types to a remote site for the adversary to
read. However, such invasive attacks can be defended with anti-
malware techniques [45]. Recent research focuses on developing
non-invasive keystroke inference attacks [3, 13, 21, 33, 36, 42, 43,
51, 53, 59], which are more surreptitious as they only require pas-
sive monitoring of corresponding physical disturbances (e.g., brain-
wave signals [43], vibrations [42], acoustic emanations [13, 51],
motion [59], inter-keystroke timing [3, 53] and wireless signals [1,
2, 21, 33, 36, 62]) in the target’s vicinity. Specifically, those methods
take advantage of the fact that a keystroke creates a unique varia-
tion of the monitored physical disturbance. Such a mapping can be
then pre-built and utilized later to infer newly typed content.

Many existing side-channel keystroke inference techniques [13,
21, 59] mainly focus on recovering meaningful English words, in-
stead of numbers, which is simpler because a sequence of keystrokes
for a word has to follow the word’s structure (i.e., alphabetical com-
binations defined in a dictionary). Also, multiple such sequences
comprising a series of consecutive words must follow language-
specific syntax, which further narrows down candidate text. In con-
trast, inferring numbers is much more challenging, as there is no
universal “dictionary” or linguistic relationship for digit sequences.
All previous work (e.g., [1, 33, 36, 62]) targeting digits rather than
words require a supervised learning process, i.e., the inference sys-
tem must obtain a large amount of training data (keystrokes on
different numbers). Considering that the victim is normally in full
control of the keyboard and types in a limited number of digits (i.e.,
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a 9-digit SSN or a 6-digit PIN) within a short time, those training-
based methods are clearly not suitable for numbers.

Due to the limitations of existing side-channel keystroke infer-
ence techniques, the security risk associated with typing a digit
sequence in public places has not particularly been addressed. In
this paper, we systematically investigate the question: is a typed
number really secure just because it is impractical to collect training
data? We discover a novel type of Wireless Inference attack target-
ing Numerical Keystrokes without requiring training, calledWINK.
Our idea comes from the following two observations.

First of all, we can easily obtain repetition information of each
observed disturbance, corresponding to an individual keystroke. We
refer to this feature as the spatial property. Different disturbances are
caused by typing different keys, so the repetition of digits in a digit
sequence would be reflected on the repeated ambient disturbances.
For example, for a typed 4-digit PIN – “2482”, the adversary would
observe three disturbances different from each other, and two that
match. Such structural information enables the adversary to shrink
the candidates of the typed PIN. In this example, the number of
average guesses to compromise the PIN decreases by almost 93%
compared to traditional brute-force attacks, i.e., from 5,000 to 360.
However, the spatial property on its own is far from achieving
an effective number inference attack, which requires the number
of candidates for the typed number to be small enough to avoid
triggering a system lockout. This motivates us to find other useful
information disclosed during the typing process to help further
shrink the candidates for the typed number.

Second, identifying each physical disturbance also derives the
temporal difference between two consecutive keystrokes, or “inter-
keystroke timing”. Some existing work utilizes such inter-keystroke
timing for keystroke inference [3, 53] but requires a training process
to collect an enormous amount of data for statistical analysis, which
as previously mentioned makes them unpractical. Instead of giving
a label (e.g., a key pair) for each inter-keystroke timing, we focus on
the inner structure of a sequence of inter-keystroke timings, i.e., the
relative size of different elements in the sequence. We refer to such
a feature as the temporal property of keystrokes, which discloses
the relationship among inter-key distances for different key pairs.
Specifically, the inter-keystroke timing generally increases with
the distance between the typed key pair, which can be immediately
obtained based on the keyboard layout. For example, the inter-
keystroke timing for continuously typing two same digits is usually
smaller than typing two different digits.

By utilizing the spatiotemporal structure (i.e., spatial property in
conjunction with temporal property) of the observed side-channel
information, we develop our training-free and context-free tech-
nique to infer the typed number. The foremost challenge is then
how to quantify the spatiotemporal structure for observed distur-
bances and also the corresponding typed number. We customize
a quantification scheme that can divide all possible numbers into
as many sets as possible to achieve high distinguishability, so that
each set has minimum elements on average. As a result, given a
quantification result for an observed disturbance sequence, the
average candidates for the corresponding typed number can be
minimized. Also, with some public information of digits on certain
positions (such as the 3-digit area code of an SSN), the search space
of possible candidates can be further narrowed down.

𝑋(𝑓, 𝑡) 𝑌(𝑓, 𝑡)
Public

Transmitter Receiver

Figure 1: General wireless-based keystroke inference setup.

As wireless signals are ubiquitous, invisible, and able to propa-
gate under non-line-of-sight (NLOS) conditions, we utilize wireless
signal as the target disturbance to capture keystrokes. Particularly,
a pre-trained model is not suitable for wireless-based keystroke
inference attacks, as the wireless channel is prone to be influenced
by environmental changes, making it impossible to collect generic
data and establish a universal model for all scenarios. Therefore,
wireless-based keystroke inference attacks [1, 11, 33, 62] all utilize
frequent training to cope with the environmental changes, instead
of relying on a one-time pre-trained model. Also, all these work
require (1) performing user-specific training (i.e., pre-obtaining a
large/desirable number of labeled data of the victim) and (2) that
each user maintains a consistent typing posture during the training
and testing. Both requirements are unlikely to be satisfied in reality,
especially for typing sensitive numbers. [62] also performs mul-
tiuser training (i.e., collecting the data from many users to build a
classifier and using it to predict the typing content of another user
whose samples are not included in the training data set) and shows
unsatisfactory inference results for victims whose typing habits are
different from the users whose data are used for training.

Our contributions are summarized as follows.
• Unlike previous extensive research in inferring keystrokes
using labor-intensive training or contextual information, this
paper identifies a new type of attack that can compromise
numerical keystrokes with only the instantaneous wireless
data collected during those keystrokes.

• We develop an algorithm to map obtained time series of
wireless measurements into a digit sequence by modeling,
extracting, and correlating their self-contained spatiotempo-
ral features.

• We carry out extensive real-world experiments, demonstrat-
ing that WINK can consistently and significantly reduce the
search space for each PIN or SSN. Specifically, over half of
the 6-digit PINs and 85% of the SSNs can be inferred within
less than 100 attempts in real-world settings.

Our collected wireless channel data and code for processing the
data are publicly available online1.

2 PRELIMINARIES
Wireless-based Keystroke Inference: There are emerging re-
search efforts in wireless-based keystroke inference [1, 2, 21, 33].
The common underlying principle is that the hand movement dur-
ing typing changes multipath signals scattered from walls or sur-
rounding objects and may also create new multipath signals. The
received signal, as the resultant of all those multipath signals, will
be altered accordingly. The impact of a wireless channel on the
transmitted signal can be quantified by the channel state information
(CSI) measurement, which can be in turn used to infer keystrokes.

1https://projectwink.info
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Orthogonal frequency-division multiplexing (OFDM) encodes
digital data on multiple carrier frequencies, and has been widely
employed in mainstreamWiFi systems such as 802.11 a/g/n/ac. The
Channel Frequency Responses (CFRs) obtained from the subcarriers
compose CSI of OFDM. The CFR for a subcarrier with frequency
𝑓 at time 𝑡 can be denoted with 𝐻 (𝑓 , 𝑡), which can be calculated
by transmitting a publicly known preamble of OFDM symbols be-
tween the transmitter and the receiver [25]. Let 𝑋 (𝑓 , 𝑡) and 𝑌 (𝑓 , 𝑡)
represent the transmitted preamble and correspondingly received
signal, respectively, for the subcarrier frequency 𝑓 , as shown in
Figure 1. An attacker can utilize a transmitter and a receiver to
create a radio environment. The transmitter transmits signals that
are distorted by the typing activity, while the receiver can quantify
such distortion by launching channel estimation. With the received
signal and the publicly known preamble, the receiver can compute
𝐻 (𝑓 , 𝑡)= 𝑌 (𝑓 ,𝑡 )

𝑋 (𝑓 ,𝑡 ) .
General Workflow: Existing keystroke inference methods using

CSI [1, 2, 33] usually rely on three phases, including signal pre-
processing, training and testing. The first phase segments the col-
lected CSI time series into a sequence of waveforms, each corre-
sponding to a keystroke, through three steps: (1) noise removal, to
make the estimated CSI more accurate; (2) dimension reduction,
to find subcarriers which show the strongest correlation with the
typing activity; and (3) waveform extraction, to detect the start and
end points of CSI time series for a keystroke. The second phase
gathers data on CSI waveforms for all keystrokes and trains a clas-
sification model, with which the third phase maps each observed
unlabelled CSI waveform into the corresponding keystroke.

SSN Basics: A nine-digit SSN is uniquely issued to an individual
by the Social Security Administration (SSA) of the United States and
usually follows a person over a lifetime. It can be broken into three
parts with a format “AAA-GG-SSSS”: (1) the first 3 digits, known as
the area number, indicate the applicant’s state of residence before
the SSA changed the SSN assignment process to SSN randomization
in June 2011 [52], and they no longer reflect the geographical region
since then; (2) the next 2 digits, called the group number, break the
numbers into convenient blocks (no group contains only zeros); and
(3) the last 4 digits, referred to as the serial number, are assigned
sequentially from 0001 through 9999. The purpose of an SSN has
expanded from tracking earnings for Social Security entitlement
and benefit computation at its inception in 1936 [47] to ubiquitous
identification throughout government and the private sector nowa-
days. Consequently, an SSN has become a “skeleton key”, which
may swiftly open the door to identity theft as mentioned previously.

3 ADVERSARY MODEL
In general, an attacker can control a wireless transmitter (TX) and
receiver (RX) pair to launch the attack, as shown in Figure 1. The
effective distance between the attacker’s TX/RX and the victim is
determined by the transmit power, antenna gain at TX/RX, as well
as the nearby environment. The transmitter can constantly transmit
the wireless signal or just whenever typing activity is detected (e.g.,
via a WiFi packet analyzer [33]).

As this work focuses on inferring numeric keystrokes, we con-
sider typing on either a traditional physical numeric keyboard or
an on-screen one. Specifically, three typical layouts of digit keys are

(a) Standard numeric pad (b) POS keyboard (c) Touch-screen PIN pad 

Figure 2: Sketches of typical typing scenarios.

discussed, as shown in Figure 2: (a) a physical palm-sized numeric
keypad with the 7-8-9 keys at the top of other digit keys, which is
usually on the far right side of a standard computer keyboard; (b)
a physical POS keyboard with the 1-2-3 keys on top; (c) a smart-
phone’s touchscreen PIN pad with the 1-2-3 keys on top. We assume
that the victim types with the same finger of the same hand. In
practice, those numeric keypads are operated by one same finger
in most cases, as the limited keypad size makes it inconvenient
for the keypad to hold two hands simultaneously, and also multi-
finger typing is prone to error [35]. We discuss the limitations of
the proposed technique in Section 7.1.

4 ATTACK DESIGN
4.1 Attack Overview
To launch WINK, the attacker first estimates CSI with received
signals (as described in Section 2) and then utilizes the general
pre-processing phase to divide the estimated CSI time series into
individual waveforms. Each waveform corresponds to the action of
pressing a key, so we call it single-keystroke waveform. Meanwhile,
WINK also records the start and end times of each extracted key-
stroke to calculate the inter-keystroke flight interval, i.e., the time
between releasing the current key and pressing the next key.

In lieu of “train-then-test” paradigms used by existing methods,
WINK uses the single-keystroke waveforms and inter-keystroke
flight intervals in the following two phases: typing session segmen-
tation and spatiotemporal correlation. The first phase partitions the
stream of single-keystroke waveforms into segments, each corre-
sponding to a “typing session” during which the user types contin-
uously without interruption. Occasionally, a user may stop for a
while during input to recall the following digits in the number, caus-
ing a longer than usual inter-keystroke flight interval not indicative
of an inter-key distance. This phase identifies such abnormally
long inter-keystroke flight intervals to separate neighboring typing
sessions. The second phase extracts the spatiotemporal feature for
each typing session, and correlates it with a digit sequence. The
correlation results enable the attacker to derive the mapping be-
tween single-keystroke waveforms and keystrokes as well as the
mapping between inter-keystroke flight intervals and digit pairs.
Such mappings obtained through different typing sessions can be
combined to further shrink the candidates of the typed number.

4.2 Typing Session Segmentation
Typing session segmentation classifies single-keystroke waveforms
and inter-keystroke flight intervals into different categories respec-
tively, and also segments intermittent typing (if any) into multiple
typing sessions. Specifically, the following three steps are involved.

4.2.1 Spatiotemporal Classification. Different keystrokes usually
lead to different key waveforms while the same keystrokes generate
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highly similar ones. We thus perform spatial classification to cluster
different single-keystroke waveforms, and each cluster represents
a different keystroke. Meanwhile, when the user’s typing finger
moves similar distances between two consecutive digit keys during
typing, the resultant flight intervals are similar. Temporal classifi-
cation is then conducted to aggregate comparable inter-keystroke
flight intervals into a separate set. The above two classification
tasks together form the spatiotemporal classification.

Spatial Classification: To compare two single-keystroke wave-
forms, WINK utilizes the technique of Dynamic Time Warping
(DTW), which has been widely utilized to quantify the similarity
between two waveforms through dynamic programming [1, 21, 33].
With two single-keystroke waveforms as input, DTW outputs the
distance between them. A short distance indicates that the two
waveforms are highly similar and originated from typing the same
key, while a long distance denotes that they exhibit different pat-
terns and are caused by pressing two different keys.

Temporal Classification: If two inter-keystroke flight intervals
are close, they will be classified as a group. Similar to the above spa-
tial classification, temporal classification computes the difference
between a pair of inter-keystroke flight intervals. A small difference
shows that the two flight intervals are similar and are placed in the
same set, while a large difference makes the two flight intervals be
classified into separate sets.

4.2.2 Abnormal Inter-keystroke Flight Interval Detection. Typing
a pair of digit keys (𝑘𝑖 , 𝑘𝑖+1) consecutively generates four events:
the press of 𝑘𝑖 at time 𝑡𝑠

𝑖
, the release of 𝑘𝑖 at time 𝑡𝑒

𝑖
, the press of

𝑘𝑖+1 at time 𝑡𝑠
𝑖+1, and the release of 𝑘𝑖+1 at time 𝑡𝑒

𝑖+1. Accordingly,
two single-keystroke waveforms can be observed along with their
respective start and end times. The flight interval for typing this
key pair is thus 𝐼𝑖,𝑖+1 = 𝑡𝑠

𝑖+1 − 𝑡
𝑒
𝑖
.

During a consecutive typing period, the inter-keystroke flight
interval is highly correlated with the physical distance between the
two keys (referred to as inter-key distance) on the keypad. On the
other hand, as aforementioned, if the user performs intermittent
typing due to sudden interruption (e.g., pausing to recall or check
the typed numbers), the resultant inter-keystroke flight interval
becomes abnormally long and the corresponding interval-distance
correlation is broken. Therefore, if an obtained inter-keystroke
flight interval is quite long (exceeding the required time for the
user to move the finger across the two keys farthest apart on the
keypad), it will be regarded as an abnormal flight interval.

The temporal classification outputs 𝑁 sets, each consisting of
similar inter-keystroke flight intervals, which we sort by their mean
interval length. We begin by assuming that all flight intervals are
normal and perform the remainder of the number inference process.
If this assumption is incorrect, we will ultimately not recover any
numbers when the process is complete. In that case, we know at
least one set of inter-keystroke flight intervals is abnormal, so we
label the largest 𝑁𝑎 sets as abnormal and try again. We try 𝑁𝑎 from
1 to 𝑁 until we succeed to obtain candidates for the typed number
or exhaust all sets.

4.2.3 CSI Session Separation. The whole CSI time series would be
divided into typing sessions with detected abnormal inter-keystroke
flight intervals. Within each typing session, every single-keystroke
waveform and normal inter-keystroke flight interval are grouped

Figure 4 
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Figure 3: Two typing sessions for inputting the number
‘452489’ with a long delay after the first 3 digits. 𝑊𝑖 (𝑖 ∈
{1, · · · , 6}) is the 𝑖th single-keystroke waveform, and 𝐼𝑖,𝑖+1 is
the flight interval between the 𝑖th and (𝑖+1)th keystrokes.

together. We call such a group a CSI session. Those CSI sessions are
then inputted to the phase of spatiotemporal correlation, aiming
to build the correlation between a sequence of single-keystroke
waveforms and a digit sequence. Figure 3 is an example of two
typing sessions when the user first types three digits, pauses for a
while, and continues to type another three digits.

4.3 Spatiotemporal Correlation
Spatiotemporal correlation is a function to convert the sequence
of single-keystroke waveforms to the typed number. We begin by
exploring a common feature to build a correlation between a CSI
session and a digit sequence. After that, we consider recovering the
digits typed within a period consisting of multiple CSI sessions.

4.3.1 Qualifying Spatiotemporal Structure. We aim to find a feature
to characterize the spatiotemporal structure of a CSI session. Ideally,
this feature can uniquely determine the corresponding sequence
of digits. For a sequence with up to 𝑛 digits, there are 𝐾𝑚𝑎𝑥 =

10+102+· · ·+10𝑛 =
10(10𝑛−1)

9 possibilities in total. A perfect feature
classifies the 𝐾𝑚𝑎𝑥 candidates into 𝐾𝑚𝑎𝑥 subsets, each having one
element only, such that an input CSI session can find a unique
match based on this feature.

We use the selected feature to divide all 𝐾𝑚𝑎𝑥 initial candidates
into 𝐾 subsets. To quantify the distinguishability of this feature,
we define a new metric, called partition rate, denoted with 𝜂, as
the ratio between 𝐾 to 𝐾𝑚𝑎𝑥 , i.e., 𝜂 = 𝐾/𝐾𝑚𝑎𝑥 (𝜂 ∈ (0, 1] as 𝐾 ≤
𝐾𝑚𝑎𝑥 ). When 𝜂 is closer to 1, we can obtain smaller subsets on
average. Therefore, our goal becomes to develop a feature with
high distinguishability that is able to divide all possibilities into the
maximum amount of subsets, i.e., to maximize 𝜂.

Intuitively, with single-keystroke waveforms, we can determine
the number of constituent digits and whether or not any digits in
the sequence are repeated. These two pieces of information yield
the spatial feature that can be used to partition all candidates of the
typed digit sequence. On the other hand, with inter-keystroke flight
intervals, we can determine whether or not any inter-keystroke
flight intervals appear again. Two inter-keystroke flight intervals
belonging to the same set indicate that the two corresponding key
pairs have similar inter-key distances. This piece of information
yields the temporal feature that can also be used to partition all
number candidates. In the following, we evaluate the partition rate
when employing different features.
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(a) 𝐼𝐾𝐷 ∈ {1, 2}

7 8 9

4 5 6

1 2 3
0 DEL

(b) 𝐼𝐾𝐷 ∈ {2, 5}

7 8 9

4 5 6

1 2 3
0 DEL

(c) 𝐼𝐾𝐷 ∈ {2 2, +,
-
}

7 8 9

4 5 6

1 2 3
0 DEL

Figure 4: Distances between digit ‘7’ and other keys.
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Figure 5: Partition rates under different cases.

Structural Vector: Let x=[𝑥1, 𝑥2,· · ·, 𝑥𝑛] denote a sequence of 𝑛
elementswhich can be single-keystrokewaveforms, inter-keystroke
flight intervals, or digits. We define its structural vector as

𝑉 : x = [𝑥1, 𝑥2, · · · , 𝑥𝑛] ↦→ y = [𝑦1, 𝑦2, · · · , 𝑦𝑛] . (1)

To construct 𝑉 , for a sequence of single-keystroke waveforms, we
set the elements of the vector 𝑦1=1 and 𝑦𝑖 =𝑦 𝑗 (𝑖 >1, 𝑗 < 𝑖) if 𝑥𝑖 and
𝑥 𝑗 are similar waveforms as classified during spatial classification
(Section 4.2.1); otherwise, we set 𝑦𝑖 = max(𝑦1, 𝑦2, · · · , 𝑦𝑖−1) + 1,
where max(·) is a function which returns the maximum among
a set of given values. By applying structural vector to both CSI
sessions and digit sequences, we can then extract their spatial and
temporal features.

Spatial Feature Extraction: For a sequence of single-keystroke
waveformsw=[𝑤1,𝑤2,· · ·,𝑤𝑛] of a CSI session, we obtain its spatial
feature s=𝑉 (w). Similarly, for a digit sequence, we regard that the
same digits are in the same set. We thus obtain its spatial feature
accordingly. For example, for an up to 6-digit sequence, there are
in total of 𝐾𝑚𝑎𝑥 =

10(106−1)
9 = 1, 111, 110 possibilities with brute-

force guessing. While using this spatial feature, we can then divide
all 𝐾𝑚𝑎𝑥 candidates into 277 subsets (i.e., 277 different structural
vectors are obtained), such that members of each subset share the
same spatial feature. On average, each set has 𝐾𝑚𝑎𝑥/277≈ 4, 011
numbers, so an input CSI session would be mapped to one of 4,011
candidates. The partition rate then equals 277/𝐾𝑚𝑎𝑥 = 2.5 × 10−4.

Temporal Feature Extraction: Empirically, the inter-keystroke
flight interval is generally proportional to the distance between the
typed two keys, i.e., inter-key distance (IKD). For a sequence of inter-
keystroke flight intervals, denoted with I = [𝐼1,2, 𝐼2,3, · · · , 𝐼𝑛−1,𝑛],
we can obtain its temporal feature (i.e., structural vector) as t = 𝑉 (I).
We then introduce how to obtain the temporal feature of a digit
sequence. We take a standard number keypad as an example to
present the relationship between inter-keystroke flight intervals
and digit pairs, while such a relationship can be derived in a similar
way for other keypad layouts.

Normally, the horizontal or vertical center-to-center key spac-
ing (referred to as unit) between adjacent keys is 19 mm ± 1
mm [26, 46]. Themovement distance of the typist’s finger for typing
two keys approximately equals the distance between the centers
of these two keys, i.e., IKD. Accordingly, all IKDs (units) form a

set{0, 1,
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√
13
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the distances between digit ‘7’ and other keys. Considering that
some IKDs are quite close and the resultant inter-keystroke flight
intervals may not show obvious difference, we divide all IKDs into
the following groups (𝑔1-𝑔4): if two IKDs belong to a same group,
the corresponding inter-keystroke flight intervals are categorized
into a same subset, and vice versa.

• 𝑔1: IKD ∈ {0};
• 𝑔2: IKD ∈ {1,

√
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2 ,
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2};
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Based on the IKDs of a digit sequence, we can thus derive its
temporal feature by calculating the structural vector. Similarly, for
an up to 6-digit secret number, we can then obtain 513 subsets in
total. Each subset has 𝐾𝑚𝑎𝑥/513 ≈ 2, 145 digit sequences. Corre-
spondingly, the partition rate is 513/𝐾𝑚𝑎𝑥 = 4.62 × 10−4.

Feature Fusion: Feature fusion is the process of combining
spatial and temporal features into a spatiotemporal one, which is
more discriminative than either input feature. With 𝑛 keystrokes,
we can compute its spatial feature s = [𝑠1, 𝑠2, · · · , 𝑠𝑛] and temporal
feature t = [𝑡1, 𝑡2, · · · , 𝑡𝑛−1], enabling us to obtain its spatiotem-
poral feature st = [𝑠1, 𝑡1, 𝑠2, 𝑡2, · · · , 𝑡𝑛−1, 𝑠𝑛]. We utilize this spa-
tiotemporal feature to divide all possibilities for an up to 6-digit
sequence, obtaining 4,652 subsets in total, which is 15.8 or 8.1 times
more than that obtained with the spatial or temporal feature. Thus,
each subset has 𝐾𝑚𝑎𝑥/4, 652 = 239 candidates for the typed digit
sequence on average. The corresponding partition rate becomes
4, 652/𝐾𝑚𝑎𝑥 = 4.2×10−3, which is much larger/more discriminative
than either the spatial or temporal feature on their own.

Let 𝐿𝑚𝑎𝑥 denote themaximum length of the typed digit sequence.
Figure 5 presents partition rates when we search candidates using
traditional brute-force guessing (Bf), spatial feature (Sp), temporal
feature (Tp), and spatiotemporal feature (St), with 𝐿𝑚𝑎𝑥 varying
from 4 to 9. We see an interesting phenomenon: with 𝐿𝑚𝑎𝑥 increas-
ing, the partition rates for Bf, Sp, and Tp all decrease, indicating
that the numeric inference difficulty increases, while the partition
rate for St does not decrease but gradually increases. This finding
demonstrates that the spatiotemporal feature can consistently facil-
itate narrowing down the search space of the typed digit sequence,
and meanwhile, it performs even better for a longer digit sequence.

4.3.2 Iterative Joint Decoding. We consider the general case when
observing 𝑁 CSI sessions, denoted by [𝐶1,𝐶2, · · · ,𝐶𝑁 ]. Let 𝑛𝑖 de-
note the number of single-keystroke waveforms within 𝐶𝑖 (𝑖 ∈
{1, · · · , 𝑁 }). Thus, the initial library for 𝐶𝑖 is the set (denoted by
S𝑖 ) consisting of all possible 𝑛𝑖 -digit sequences 𝑆1, 𝑆2, · · · , 𝑆10𝑛𝑖 , ex-
cluding any 𝑆𝑘 (𝑘 ∈ {1, · · · , 10𝑛𝑖 }) that is not allowed according to
the number composition rules. Our goal is to find a stream of 𝑁
digit sequences that correspond to the 𝑁 CSI sessions.

Towards the goal, we first decode each CSI session and then
employ iterative joint decoding of multiple CSI sessions. We com-
pare the spatiotemporal feature of 𝐶𝑖 to that of each 𝑆𝑘 ∈ S𝑖 , and
mark 𝑆𝑘 as a candidate if two features are equal. The number of
candidates for 𝐶𝑖 obtained at this moment is denoted by 𝑝𝐶𝑖

. With
each candidate, we can build a mapping pair, one mapping between

3037



CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Edwin Yang, Qiuye He, and Song Fang

single-keystroke waveforms and digits, and the other between inter-
keystroke flight intervals and digit pairs. Different CSI sessions pro-
vide extra information (i.e., limitations) for each other, and thus help
further shrink the search space. Let𝑀𝑖 denote the concatenation of
the first 𝑖 CSI sessions, and we use R𝑀𝑖

= {𝑅1
𝑀𝑖
, 𝑅2

𝑀𝑖
, · · · , 𝑅𝑟𝑖

𝑀𝑖
} to

represent its 𝑟𝑖 candidates. Starting from the second CSI session, we
perform the following steps to decode concatenated CSI sessions.
Initially, we set 𝑖 =2,𝑀1=𝐶1, 𝑟1=𝑝𝐶1 , and R𝑀1 =S1.

(1) We concatenate the current CSI session with all previous
ones, i.e.,𝑀𝑖 = 𝑀𝑖−1 | |𝐶𝑖 . Thus, 𝑅𝑢𝑀𝑖−1

| |𝑆𝑣 (𝑢 ∈ {1, · · · , 𝑟𝑖−1},
𝑣 ∈ {1, · · · , 𝑝𝐶𝑖

}) could be a potential candidate for the newly
concatenated CSI session).

(2) For each 𝑅𝑢
𝑀𝑖−1

| |𝑆𝑣 , we compare mappings obtained from
𝑅𝑢
𝑀𝑖−1

and 𝑆𝑣 . If their mapping sets have any contradictions
(i.e., two single-keystroke waveforms within the same subset
map to different digits, or two different digit pairs share the
same subset of inter-keystroke flight intervals while their
IKDs do not belong to the same group), we then rule out this
candidate; otherwise, we mark it as a candidate for𝑀𝑖 , and
meanwhile merge all single-keystroke waveform/digit and
inter-keystroke flight interval/digit pair mapping informa-
tion as the new mapping set.

(3) We increment 𝑖 and jump to step (1).

We take inference of a 6-digit PIN (937357) as an example. A
user types this PIN on a standard number pad with two typing
sessions. The user inputs the first three digits (937) and the last three
digits (357) in the first and second typing sessions, respectively. We
denote the spatiotemporal features corresponding to the two typing
sessions by 𝑓1 = [𝑑1, 𝑡1,2, 𝑑2, 𝑡2,3, 𝑑3] and 𝑓2 = [𝑑4, 𝑡4,5, 𝑑5, 𝑡5,6, 𝑑6],
where 𝑑𝑖 denotes the 𝑖th (𝑖 ∈ {1, · · · , 6}) observed single-keystroke
waveform and 𝑡 𝑗, 𝑗+1 is the calculated inter-keystroke flight interval
between the 𝑗 th and ( 𝑗 + 1)th ( 𝑗 ∈ {1, · · · , 5}) keystrokes.

Due to the aforementioned consistency between spatial features
for the same digit, 𝑑2 and 𝑑4 are similar (so are 𝑑3 and 𝑑6). Also, con-
sidering the stability between temporal features for close inter-key
distances, 𝑡4,5 and 𝑡5,6 are close. As a result, we have 𝑓1 = [1, 1, 2, 2, 3]
and 𝑓2 = [1, 1, 2, 1, 3]. We pre-compute the spatiotemporal feature
for each possible 3-digit sequence. By comparing each with 𝑓1 and
𝑓2, we obtain 216 and 288 candidates for the first and second typing
sessions, respectively. Each candidate implies a mapping between
single-keystroke waveforms and digits, as well as a mapping be-
tween inter-keystroke flight intervals and digit pairs. To consider
both typing sessions simultaneously, we concatenate each candidate
for the first typing session and each for the second one, generat-
ing 216 × 288 = 62, 208 combinations. For some combinations, the
mapping information for both typing sessions may contradict each
other and we rule out such combinations as candidates for the
typed PIN. For example, one combination “937354” is removed as a
single-keystroke waveform (𝑑3 or 𝑑6) maps two different digits (7
and 4). Consequently, only 16 combinations (including the correct
PIN) survive as final candidates for the typed PIN. Such perfor-
mance corresponds to a 62,500-fold improvement compared with
the traditional brute force attack which provides 106 candidates.

4.4 Impact of Non-numeric Keystrokes
Usually, when a user inputs a number, there is no need to use any
non-numeric keys. A typical example is an iOS passcode. After typ-
ing a 4- or 6-digit PIN on an iOS device (a passcode by default was
4 digits prior to iOS 9, and 6 thereafter [22]), the device would au-
tomatically initiate authentication. However, on certain occasions,
we may need to use non-numeric keys, including the OK/Enter key,
Backspace/Delete key. For example, if a user customizes an iOS
passcode whose length is neither 4 nor 6, after typing this passcode,
the user has to press the OK key to get authenticated. Also, to
correct typed digits by mistake, the Delete key comes in handy.

Handling OK Key: Since the OK key (if the typist uses it) is
always the last key to be pressed, we can regard the last keystroke
as it. Thus, we just launchWINK by processing the CSI data stream
corresponding to other keystrokes.

Handling Delete Key: We consider the most frequent cases
when the typist presses the Delete key once to correct one digit or
successively for multiple digits. Let 𝐿 and 𝐿′ denote the length of the
target secret number and the number of observed single-keystroke
waveforms, respectively. Accordingly, the Delete key is pressed for
𝜎 = (𝐿′−𝐿)/2 times. We then search for single-keystroke waveforms
which appear 𝜎 times among all observed ones, excluding the first
and the last single-keystroke waveforms (as pressing the Delete
key usually does not happen at the beginning or end). Such single-
keystroke waveforms are potential candidates for the Delete key.
We thus associate the Delete key with one potential candidate in
turn until exhausting all candidates. For each association, the Delete-
key-labelled single-keystroke waveforms, together with the ahead
𝜎 single-keystroke waveforms (corresponding to deleted input),
divide the original single-keystroke waveform sequence into two
parts. We perform WINK for both parts to infer the typed number.

4.5 CSI Error Handling
Wireless noise may make pre-processed CSI inaccurate and cause
spatiotemporal classification errors, leading to no valid candidates
for the typed number. Since the accuracy of inter-keystroke flight
interval depends on the detection accuracy for the start and end
points of corresponding single-keystroke waveforms, we thus just
discuss the cases when spatial classification error happens.

Due to such classification errors, we usually either obtain invalid
results or have no candidate at all. The latter case (i.e., failure of
inference) is straightforward, signaling the existence of errors; the
first case, however, cannot determinewhether the CSI error happens
or not until all candidates have been tested (i.e., if a candidate
passes the authentication, the correct one is found, and thus no
error happens). However, empirically, we find that the first case
rarely happens. This is because CSI errors often bring exclusive
spatial and temporal features, causing the phase of spatiotemporal
correlation to output no candidates.

To handle CSI errors, we develop a heuristic algorithm by guess-
ing and removing erroneous single-keystroke waveforms. Specifi-
cally, we assume there are 𝑒𝑠 erroneous single-keystroke waveforms
among a total of 𝐿 key waveforms. Thus there are 𝐿𝐶𝑒𝑠 different
error cases. Each erroneous waveform would be marked as unde-
termined (i.e., ranging from 0 to 9) together with neighboring inter-
keystroke flight intervals, and would not be used for calculating
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the spatiotemporal feature. WINK is then performed based on the
newly calculated spatiotemporal feature. The returned candidates
(if any) combine with possibilities for erroneous key waveforms
to form the final candidates for the typed number. We can start
with 𝑒𝑠 = 1 and try each corresponding error case until obtained
candidates have the correct typed number.

5 EXPERIMENTAL EVALUATION
We implement WINK using Universal Software Radio Peripherals
(USRPs). The prototype system consists of a transmitter (Tx) and
a receiver (Rx). Each node is a USRP X300 equipped with a CBX
daughterboard [17]. Tx and Rx are placed at opposite positions
relative to the keyboard. There is a 10 cm thick cubicle divider be-
tween either of them and the keyboard, so that both are not within
the line-of-sight of the target user. The distance between Rx and
the keyboard is 2 m, while that between Tx and the keyboard is
50 cm. Rx extracts CSI from the received signals to infer numeric
keystrokes. We investigate three different types of numeric key-
boards, i.e., a standard physical number pad, a typical POS keypad,
and a touchscreen one. We put the typing device on a flat table.
In this section, we let a single user perform experiments, while in
Section 6, we consider more typists in a real-world user study.

Metrics: We calculate entropy to measure the number strength
against brute-force attacks. Suppose there are𝑚 candidates for a
number𝑋 and let 𝑥𝑖 (𝑖 ∈ {1, 2, · · · ,𝑚}) denote one of them. The𝑋 ’s
entropy can be then calculated as 𝐻 (𝑋 ) = −∑𝑚

𝑖=1 𝑃 (𝑥𝑖 ) · log2 𝑃 (𝑥𝑖 ),
where 𝑃 (𝑥𝑖 ) is the probability that 𝑋 = 𝑥𝑖 holds.

To investigate the security inequality of a group of numbers with
the same length, we employ the Gini coefficient [16], which is most
commonly used in economics to measure the inequality among
levels of income. We consider a group of 𝑁 numbers, each with 𝑙
digits. The average of all 𝑁 numbers’ entropies is represented by

𝐸 =

∑𝑁
𝑖=1 𝐸𝑖
𝑁

, where 𝐸𝑖 denotes the entropy of the 𝑖𝑡ℎ number. We
then derive the Gini coefficient 𝐺𝑙 for those 𝑙-digit numbers as

𝐺𝑙 =

∑𝑁
𝑖=1

∑𝑁
𝑗=1 |𝐸𝑖 − 𝐸 𝑗 |
2𝑁 2𝐸

. (2)

The value of𝐺𝑙 varies from 0 to 1, where 0 indicates perfect equality
(when all entropies are the same) and 1 depicts perfect inequality
(when one number has a positive entropy while the rest entropies
are 0, leading to 𝐺𝑙 =

𝑁−1
𝑁

≈ 1, where 𝑁 ≫ 1).

5.1 Case Study
We first demonstrate an example, in which the user types a PIN
“06107” on an iPhone 11 Pro Max passcode keypad. We use the same
pre-processing methods with existing techniques [1, 21, 33], includ-
ing noise removal, dimension reduction, and keystroke waveform
extraction. To sanitize the CSI data, a weighted moving average
filter [32, 60] is applied. Next, we utilize Principal Component Anal-
ysis (PCA) [49] to refine the most representative components influ-
enced by keystrokes from CSI collected at all subcarriers. Finally,
we extract the corresponding waveform for every single keystroke.

Figure 6 presents the raw and filtered CSI time series. We ob-
serve five single-keystroke waveforms (𝑊1 to𝑊5) and four inter-
keystroke flight intervals (𝐼1,2 to 𝐼4,5).𝑊1 is highly similar to𝑊4.
Meanwhile, either of them and the rest three are different from
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Figure 6: CSI for the PIN “06107”.
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Figure 7: Variation of the number of inferred candidates.

each other. Accordingly, the spatial feature can be denoted with
[1, 2, 3, 1, 4]. Also, as 𝐼4,5 < 𝐼1,2 ≈ 𝐼2,3 < 𝐼3,4, the temporal feature
can be denoted with [2, 2, 3, 1]. By fusing the spatial and temporal
features, the phase of spatiotemporal correlation outputs 12 can-
didates. Thus,WINK reduces the maximum attempts required for
breaking a 5-digit PIN to just 12, compared with the brute-force
attack which needs 105 times, i.e., the PIN entropy is decreased
from 5 log2 10=16.61 bits to −∑12

𝑖=1
1
12 log2

1
12 =3.59 bits.

Figure 7 presents the variation of the amount of inferred candi-
dates as more digits are typed in. We see initially, the number of
candidates increases with more key waveforms and flight intervals
being processed. This is mainly because the original search space for
a longer digit sequence is larger. However, with a richer spatiotem-
poral feature, the number of candidates dramatically decreases to
84 for 4 digits and 12 for 5 digits, i.e., the speed of shrinking the
search space exceeds that of original search space growth.

5.2 PIN Inference
To balance security and usability, most authentication systems
allow PINs with 4 to 6 digits [29]. To approximate user choices of
PINs, we extract leaked real-world PINs with 4 to 6 digits from
the RockYou database [14], which is widely used in PIN security
research (e.g., [6, 58]). For every PIN length, we obtain 100 samples,
asking the user to type each extracted PIN separately on the iPhone
11 Pro Max keypad. We launch WINK and compute PIN entropies.
For each PIN length, we sort the PINs in ascending order of the
entropies and index them from 1 to 100 in increments of 1. Figure 8
shows the PIN entropy distribution with and without applying the
proposed attack. We have three major observations.

First, withWINK, the search space of the typed PINwith different
lengths is significantly shrunk. The attacker decreases the entropy
of a 6-digit PIN from 20.0 bits to as low as 4.0 bits, vastly reducing

3039



CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Edwin Yang, Qiuye He, and Song Fang

0 20 40 60 80 100

PIN Index

5

10

15

20

E
n

tr
o

p
y
 (

b
it
s
)

4-digit w/o attack

4-digit with attack

5-digit w/o attack

5-digit with attack

6-digit w/o attack

6-digit with attack

Figure 8: Entropy distribution for PINs
with different lengths.

0 2 4 6 8 10

Entropy (bits)

0

0.2

0.4

0.6

0.8

1

E
m

p
ir
ic

a
l 
C

D
F

#364

#367

#373

#378

#384

Figure 9: CDFs of SSN entropy in a same
state (Michigan).

0 2 4 6 8 10 12 14

Entropy (bits)

0

0.2

0.4

0.6

0.8

1

E
m

p
ir
ic

a
l 
C

D
F

CA

OR

IA

TX

NY

MI

RND
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ferent states.

the maximum brute-force attempts for breaking the PIN from 1
million to just 16. Overall, more than 10% of the selected 6-digit
PINs can be inferred with an average of fewer than 50 trials.

Second, entropies vary for PINs with the same length. For exam-
ple, the entropy of an extracted 6-digit PIN ranges from 4.0 to 12.3
bits, which means the average amount of brute-force trials required
to guess such a PIN varies from 8 to 2,521. We compute the Gini
coefficients (𝐺4, 𝐺5, and 𝐺6) for each PIN length (4-6), and obtain
𝐺4=0.33, 𝐺5=0.47, and 𝐺6=0.57. These results demonstrate there
is notable security inequality among PINs of the same length, and
a longer PIN length may introduce more severe security inequality.

Third, longer PINs provide a little increase and sometimes even
decrease in security, illustrated by the similar entropy distributions
of PINs with different lengths. Longer PINs provide the attacker
with a richer spatiotemporal structure, which shrinks the search
space more quickly. Specifically, WINK lowers entropy by an aver-
age of 6.8 bits for 4-digit PINs, 9.3 bits for 5-digit PINs, and 13.4 bits
for 6-digit PINs. On average, our attack makes breaking a 6-digit
PIN become easier than brute-forcing a 3-digit PIN, while inferring
a 4- or 5-digit PIN is reduced to brute-forcing a 2-digit PIN.

Impact of PIN Blocklist: Modern authentication systems usu-
ally implement a blocklist containing weak PINs. When a user
selects a blocklist PIN, the system prompts a warning to suggest or
enforce choosing a non-blocklist one. The study [41] reveals the
iOS blocklist of passcodes, including 274 4-digit and 2,910 6-digit
PINs. We compare these PINs with the most vulnerable 10% PINs
against our attack obtained above, and find no overlap. Thus, new
weak PINs revealed byWINK should be included in the blocklist to
improve the minimum PIN security. Also, if the system disallows
blocklist PINs,WINK can use such information to further shrink
the search space by winnowing out candidates appearing in the
blocklist. To minimize the negative impact of extending blocklists,
for each extension, we should then include all most vulnerable
PINs sharing the same spatiotemporal feature in the blocklist. As
such inclusion has no additional impact on remaining PINs (whose
spatiotemporal features are different from those of the included
PINs), the maximum PIN entropy would not be affected while a
higher minimum/average PIN entropy can be achieved.

Discussion on PIN Strength: Generally, a PIN whose spa-
tiotemporal feature divides all PIN possibilities into a maximum
number of subsets would have the strongest strength againstWINK.
Considering the spatial domain, such a PIN should have no digit
repetition, as the corresponding spatial feature discloses the least

information. Considering the temporal domain, the information
disclosed via the temporal feature depends on the IKD sequence of
the digits constituting the typed PIN. The strongest PINs, in this re-
spect, would be in the largest temporal subset, i.e., be in the largest
group of digit sequences that share the same temporal feature.

5.3 SSN Inference
As aforementioned, SSNs issued before June 2011 (without SSN
randomization) follow a determined structure (e.g., the first three
digits denote the area number assigned by geographical region).
Inferring SSNs issued after June 2011 is like inferring a 9-digit PIN.

Without SSN Randomization: We select two states from each
of the west, middle, and east of the United States, and obtain Cali-
fornia (CA), Oregon (OR), Iowa (IA), Texas (TX), New York (NY),
and Michigan (MI). Different states have different 3-digit area codes
and a state may have one or multiple area codes. Such informa-
tion is public [30]. For example, Wyoming has only one area code
520 while area codes 362-386 (i.e., 25 possibilities) are allocated for
Michigan. Thus, knowing which state the user comes from, the area
code range of the target SSN can be queried.

Same-state SSNs: We take Michigan as an example, and randomly
select five allocated area codes (364, 367, 373, 378, and 384). With
each, we construct 100 SSNs randomly. We let the user type each
SSN in a typing session on a standard number pad. Figure 9 plots
the empirical cumulative distribution functions (CDFs) of the SSN
entropies. We observe that SSNs with the same area code exhibit dif-
ferent levels of security. For example, SSNs prefixed by 364 have en-
tropies ranging from 1 to 7.6 bits. For the SSN “364-93-4632”,WINK
outputs only two candidates (i.e., the correct one and a wrong one
“364-93-4635”). Specifically, 60% of SSNs with area codes 364 and 367
have entropies below 4.9 and 4.7 bits, respectively, indicating the
maximum brute-force attempts required for compromising them
are just 30 and 27. Also, WINK significantly reduces the search
space consistently for all area codes, and obtains entropies ranging
from 1 to 9.3 bits. In contrast, traditional brute-force attacks require
guessing roughly 25×106 times for an SSN assigned inMichigan. As
neither the middle two digits nor the last four digits of an SSN can
be all zeros, the exact number is 25×(106−104−102+1)=25×989, 901,
equivalent to an entropy of 24.6 bits.

SSNs across Different States: We randomly generate 100 SSNs allo-
cated for every state, and then let the user type each SSN separately
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Table 1: Degrees of security inequality for SSNs with a same area code and SSNs issued within a same state.
State California Oregon Iowa

Area Code 546 550 559 561 573 540 541 542 543 544 479 480 481 484 485
𝐺𝑎𝑟𝑒𝑎 0.61 0.59 0.52 0.44 0.57 0.52 0.50 0.57 0.55 0.49 0.51 0.57 0.49 0.60 0.47
𝐺𝑠𝑡𝑎𝑡𝑒 0.77 0.54 0.52
State Texas New York Michigan

Area Code 449 452 455 463 467 057 088 109 113 126 364 367 373 378 384
𝐺𝑎𝑟𝑒𝑎 0.54 0.56 0.52 0.50 0.52 0.55 0.58 0.62 0.57 0.63 0.54 0.55 0.51 0.55 0.56
𝐺𝑠𝑡𝑎𝑡𝑒 0.58 0.60 0.59

(a) Impact of input layout (b) Impact of keypad size (c) Impact of keyboard type
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Figure 11: Impact of keypad features (layout/size/type).

on a standard number pad. Figure 10 plots the CDFs of correspond-
ing SSN entropies. We see that our attack consistently decreases
SSN entropies, and different states have different entropy ranges.
Specifically, 85% of the chosen SSNs in Oregon have an entropy
of less than 5.6 bits, indicating that they can be inferred with an
average of fewer than 25 attempts. However, such a ratio equals
just 27% for New York.

We calculate Gini coefficients (𝐺𝑎𝑟𝑒𝑎) for SSNs with the same
area code, and also overall Gini coefficients (𝐺𝑠𝑡𝑎𝑡𝑒 ) for SSNs issued
within the same state. Table 1 presents the values of 𝐺𝑎𝑟𝑒𝑎 and
𝐺𝑠𝑡𝑎𝑡𝑒 for different states. We see that no matter from geographical
region-wide or state-wide SSNs, they exhibit quite serious security
inequality (with Gini coefficients ranging from 0.44 to 0.77). Also,
for different area codes, “126” in NY and “561” in CA demonstrate
the highest and lowest Gini coefficients (i.e., 0.63 and 0.44).

With SSN Randomization: In this case, an SSN can have any
first 3-digit codes except 000, 666, and 900-999. With traditional
brute-force attacks, (109 − 102 × 106)/2 attempts are required on
average, i.e., the SSN entropy equals 29.7 bits. Figure 10 also presents
the CDF of entropies for SSNs assigned via SSN randomization
(RND) with the same experimental setting. We observe that SSN
randomization increases the SSN entropies overall compared with
the previous SSN assignment process, while our attack still greatly
shrinks the search space compared with traditional brute-force
attacks. Over 7% of SSNs can be inferred with an average of 50
attempts. The Gini coefficient for the selected SSNs equals 0.57,
again indicating the severe inequality of SSN security even when
SSN randomization is employed.

5.4 Robustness to Influential Factors
To evaluate the impact of each influential factor, we employ 100
randomly selected 6-digit PINs from the RockYou password dataset
and ask the user to type them, once per PIN, under each situation.

5.4.1 Impact of Environment. We testWINK to infer PINs inputted
on an iPhone 11 ProMax under two different environments: (a) quiet
one where there is no movement of other users, and (b) noisy one
where other users walk around. Also, we compare the performance
of an omni-directional VERT2450 antenna [19] and a directional

Table 2: PIN entropy under different environments.

Environment Antenna Entropy (bits)
Minimum Maximum Mean

Quiet Directional 2.0 10.3 8.1
Omni-directional 3.0 10.8 8.7

Noisy Directional 5.1 10.6 9.0
Omni-directional 5.1 12.5 9.6

LP0965 antenna [18] focusing the energy towards the target of
interest. For a quiet environment, omni-directional and directional
antennas present 96.7% and 98.2% of CSI fragmentation success
rate (i.e., the ratio of successfully segmented single-keystroke wave-
forms to the total number of keystrokes performed by the user),
respectively, and 92.2% and 97.2% for a noisy environment. Table 2
shows the obtained PIN entropies in different environments.We can
see thatWINK works under both environments regardless of the
antenna type. It lowers PIN entropy by at least 7.5 bits compared to
traditional brute-force attacks (in which a 6-digit PIN has 20.0 bits
of entropy). In a quiet environment, both antennas present similar
entropy ranges due to low CSI interference, while in a noisy envi-
ronment, the directional antenna presents a slightly lower mean
entropy than the omni-directional one, demonstrating the direc-
tional antenna effectively reduces the effects of the nearby human
movement. Consequently, WINK employs directional antennas for
better inference performance.

5.4.2 Impact of Keyboard Layout. We test three popular layouts
of numeric keypads with similar sizes, including (a) iOS passcode
keypad (77.8×158 mm displayed on iPhone 11 Pro Max), (b) 3×4
number pad (75×94 mm) on the far right of a standard keyboard
(DELL KB216T [15]), and (3) 3×4 POS keypad (53.5×80 mm for
the model YD541). We refer to them as “Pho”, “Std”, and “POS”,
respectively. Figure 11 (a) presents the corresponding PIN entropies.
We can observe that regardless of input layout, our attack decreases
the entropies of different PINs in varying degrees. For iOS passcode
and POS keypads, their PIN entropy ranges (i.e., 4.7-12.4 bits and
4.1-12.3 bits) are quite close. This is due to the high similarity of
their digit arrangement on keypads (with the 7-8-9 keys two rows
above the 1-2-3 keys). As the number pad on a standard keyboard
has a different key arrangement (with the 1-2-3 keys on top and
the 7-8-9 keys on the third row), its PIN entropy range (i.e., 5.7-12.3
bits) is slightly different. Also, for “Pho”, “Std”, and “POS”, the Gini
coefficients are 0.57, 0.58, and 0.57, respectively, implying a small
difference in security inequality brought by input layout.

5.4.3 Impact of Keypad Size. Even for the same input layout, the
keypad size may differ. We test three iOS devices with different
keypad sizes, i.e., iPhone 11 Pro Max (6.5-inch display), iPhone 12
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Table 3: Impact of different interaction scenarios.
Typing
Hand Scenario 𝐺

PIN Entropy (bits)
Minimum Maximum Mean

Left
One-hand 0.50 3.8 12.3 9.4
Same-hand 0.66 3.8 14.8 9.6
Two-hand 0.79 4.0 17.2 9.8

Right
One-hand 0.58 3.8 14.8 9.5
Same-hand 0.57 3.8 14.8 9.7
Two-hand 0.77 3.8 17.2 10.1

Mini (5.4-inch display), and iPhone SE (4.7-inch display), which we
refer to as “L”, “M”, and “S”. Figure 11 (b) shows the resultant PIN en-
tropies. We see that for all keypad sizes, our attack makes breaking
PINs much easier than traditional brute-force attacks. With the key
size increasing, the mean PIN entropy slightly decreases. This ap-
pears due to the fact that a larger keypad size makes CSI waveforms
for pressing different digits and switching between neighboring
digits more distinguishable, thus yielding less spatiotemporal clas-
sification errors and richer spatiotemporal features. In terms of
security inequality, the corresponding Gini coefficients are 0.50,
0.50, and 0.48 in the order of keypad size, implying that keypads
with different sizes consistently have severe security inequality.

5.4.4 Impact of Keyboard Type. With different keyboard types, the
amplitudes of hand movement vary, which may affect the accuracy
of spatiotemporal classification. We choose three popular types of
keyboards with the same keypad layout (3×4 number pad with size
75×94 mm): mechanical (Gigabyte Force K83 [24]), rubber-dome
membrane (DELL KB216T), and touch-screen (on Lenovo Tab 4
10 Plus Tablet [31]). We denote them with “Mc”, “Mb”, and “Ts”.
Figure 11 (c) shows the obtained PIN entropies. We observe similar
entropy ranges for different keyboard types. The mechanical key-
board has the lowest mean entropy (8.8 bits) and the touch screen
exhibits the highest one (9.0 bits). This is because the mechanical
keyboard has the longest key travel distance and the membrane
comes second. A longer key travel distance makes CSI waveforms
associated with different digits more distinguishable, leading to
more accurate spatiotemporal classification. Accordingly, the Gini
coefficients for “Mc”, “Mb”, and “Ts” are 0.59, 0.59, and 0.60, respec-
tively, confirming the security inequality for all different keyboards.

5.4.5 Impact of Typing Scenarios in Mobile Devices. Users may
interact with mobile devices in different ways. According to a ques-
tionnaire of 1,022 subjects [7], the following two interaction sce-
narios are the most popular: (1) same-hand: holding the device and
typing with the thumb of the same hand; (2) two-hand: holding
the devices with one hand and typing with a finger of the other
hand. In another common case, referred to as a one-hand scenario,
a user operates a mobile device placed face-up on a flat surface
(e.g., table). We focus on these three scenarios when the user inputs
PINs on an iPhone 11 Pro Max. Additionally, a user may be left-
or right-handed. Table 3 shows the PIN entropies and Gini coeffi-
cients for different scenarios. We have the following observations.
First, handedness does not have an obvious impact on the attack
performance, as corresponding PIN entropies and Gini coefficients
are quite similar for left-hand and right-hand typing. Second, the

Table 4: Impact of different keypad’s slope angles.

Slope Angle 𝐺
PIN Entropy (bits)

Minimum Maximum Average
0◦ 0.50 2.0 11.5 8.8
30◦ 0.76 4.5 17.2 9.5
60◦ 0.84 3.8 17.2 9.2
90◦ 0.69 2.0 14.8 8.9
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Figure 12: Impact of typing sessions or Delete key presses.

PIN entropies for the three scenarios slightly vary. Overall, the one-
hand scenario has the smallest mean PIN entropy, the same-hand
scenario takes second place, and the two-hand scenario has the
largest. This can be explained by the fact that the hand holding
the phone may introduce extra movement during typing and such
interference is most impactful in the two-hand scenario. Finally, all
Gini coefficients are above 0.5, again demonstrating that our attack
causes severe security inequality among different PINs.

5.4.6 Impact of Keypad’s Slope Angle. To reduce wrist extension
and facilitate viewing of the keypad, some keypads may have a
built-in or tilt-adjustable slope angle 𝜃 , which is defined as the angle
between the keypad plane and the horizontal plane [4]. For example,
keypads for most POS, ATMs, and petrol pumps are often installed
with a slope angle between 0 and 90 degrees, determined by the
keypad height above ground level [20]. We enable the user to type
on a YD541 POS keypad and vary 𝜃 from 0◦ to 90◦, with increments
of 30◦, where 0◦ denotes that the keypad is placed flat and 90◦
represents that the keyboard is parallel to the vertical wall. Table 4
presents the PIN entropies and Gini coefficients for different slope
angles.We can see our attack decreases the PIN entropy consistently
for different 𝜃 (note that the PIN entropy is 20.0 bits without our
attack). Also, when 𝜃 equals 0◦ or 90◦, the corresponding mean PIN
entropy is slightly smaller than that for the case when 𝜃 is 30◦ or
60◦. This appears as a tilted surface is more likely to introduce more
failure of spatiotemporal classification. Lastly, all Gini coefficients
are larger than 0.5, convincingly implying that different PINs may
have different strengths against our attack irrespective of 𝜃 .

5.4.7 Impact of Multiple Typing Sessions. As discussed in Sec-
tion 4.2, users may perform intermittent typing and finish PIN
input with several typing sessions. We let the user type each PIN on
a keyboard number pad (Gigabyte Force K83) with varying typing
sessions (1 to 3). Figure 12 (a) presents the corresponding PIN en-
tropies.We observe thatWINK consistently reduces PIN entropy for
all cases. Overall, such reduction performance is slightly decreased
with more typing sessions. Specifically, the average PIN entropies
for 1 to 3 typing sessions are 8.9, 9.2, and 9.9 bits, respectively. This
is due to the fact that adding one typing session indicates that one
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Figure 12

(a) Private office. (b) Public cafeteria.
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Figure 13: Experimental scenarios.

inter-keystroke flight interval would not be used to shrink the can-
didates for the typed PIN. Besides, the Gini coefficients for 1 to 3
typing sessions are 0.59, 0.63, and 0.66, respectively, indicating the
existence of security inequity among the PINs.

5.4.8 Impact of Typing Non-numeric Keys. As aforementioned,
users may occasionally need to type some non-numeric keystrokes
during inputting a number (e.g., for indicating the end of input
or correcting input). No matter whether the OK/Enter key is used
or not in the end to finish the typing session, WINK extracts the
same spatiotemporal feature with the same CSI time series. Thus,
its performance would not be affected. In this section, we focus on
evaluating the impact of erasing mistyped digits with the Delete
key. For each PIN, we let the user type the Delete key once to cor-
rect one digit, twice to correct two digits, and three times to correct
three digits. The number pad on a Gigabyte Force K83 keyboard is
utilized. For comparison, we also let the user type each PIN without
using the Delete key. Figure 12 (b) presents the PIN entropies for
different number of Delete key presses. We see thatWINK decreases
the PIN entries at a similar level regardless of the number of Delete
key presses. The mean PIN entropies for 1 to 3 Delete key presses
are 9.10, 9.16, and 9.25 bits. Compared to the case when no Delete
key is used (with the mean PIN entropy of 8.9 bits), Delete key
usage brings slightly higher average PIN entropies. This is because
the Delete key essentially disrupts the PIN entry into two typing
sessions (before and after typing the Delete key). Furthermore, the
Gini coefficients for 0 to 3 Delete key presses are 0.59, 0.64, 0.64,
and 0.63, respectively, showing that typing Delete keys does not
mitigate security inequity for different PINs.

6 REAL-WORLD USER STUDY
We recruited 20 volunteers (U1-U20; aged 21-36 years old; 8 self-
identified as females and 12 as males) to examine the practicality
of WINK.2 We consider two general typing scenarios, as shown
in Figure 13: (a) a private office room, and (b) a public campus
cafeteria. The office room offers a quiet environment where there
is no person walking around the user, while the cafeteria is noisy
as people walk around or move chairs from time to time. In both
scenarios, the target user sits at a table and types; the transmitter
(Tx) and the receiver (Rx) are placed at opposite positions relative
to the table. Each of Tx and Rx is a USRP X300 connected with a
directional antenna – LP0965. Both Tx and Rx are put behind a 6
cm-thick wooden partition panel and are thus within non-line-of-
sight (NLOS) of the target user. Their distances with the typing
device (iPhone 11 Pro Max) are both 1.5 m.

Each participant was instructed to do the following tasks:

2The study has been reviewed and approved by our institution’s IRB.
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Figure 14: Average top-𝑘 accuracy for PIN inference.

User test - SSN

(a) Office environment (b) Cafeteria environment

        

       

 

   

   

   

   

 

  
  
  
 
 
 
  
 
 
 
  
 
       

      

      

       

       

        

       

 

   

   

   

   

 

  
  
  
 
 
 
  
 
 
 
  
 
       

      

      

       

       

Figure 15: Average top-𝑘 accuracy for inferring SSNs.

• Unlocking with a 6-digit PIN : iOS PIN blocklist is enforced
to guarantee that no weak key is used.

• Typing an SSN : a valid SSN is formed by selecting a state, a
corresponding 3-digit area code, and the rest 6 digits.

For ethical consideration, we reminded users not to select their
own in-use PINs for various applications or SSNs. Only after the
user confirmed this, we started to launch our attack. Meanwhile,
we allow the participants enough time to memorize/practice their
selected numbers before testing. For every task, each participant
performed 100 attempts with different numbers. We present the
inference result to the participant, who determines whether the
typed number is in the inferred number list.When the typed number
is in the list, we then calculate the top-𝑘 accuracy 𝛼 , defined as the
probability that the top 𝑘 guesses from the 𝑁 candidates returned
by our attack contain the typed number. If 𝑘>𝑁 , we have 𝛼=1;

otherwise, 𝛼 =
1𝐶1 · (𝑁 −1)𝐶 (𝑘−1)

𝑁𝐶𝑘
= 𝑘

𝑁
, where 𝑁𝐶𝑘 is the number of

combinations by choosing 𝑘 from 𝑁 numbers.
PIN Inference Results: Figure 14 presents the PIN inference

performance. We observe that our attack consistently decreases the
PIN strength for all users in both test environments. The top-25
accuracy in the office ranges from 13.0% to 29.6% while that value
varies from 12.7% to 22.0% in the cafeteria. The slight accuracy de-
crease comes from the higher interference in the cafeteria. Also, the
mean top-100 accuracy for all users equals above 50% (office: 52.3%;
cafeteria: 50.6%), implying that more than half of the selected 6-digit
PINs can be successfully inferred with up to 100 guesses. Besides,
our attack achieves at least 74.7% and 66.0% top-250 accuracy for
all users under the office and cafeteria environments, respectively.

SSN Inference Results: Figure 15 presents the SSN inference
performance. We observe regardless of 𝑘 , the corresponding top-𝑘
accuracy for 9-digit SSNs is always higher than that for 6-digit PINs
in each scenario. This is because the knowledge of the 3-digit area
code range provides extra information for shrinking the candidates.
In the office, the top-25 accuracy is in the range of 46.7%-68.7%,
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Figure 16: Gini coefficients for chosen PINs and SSNs.

implying that a substantial portion of typed SSNs is quite vulnerable
to our attack; the average top-100 and top-250 accuracy across all
users achieve 85.6% and 95.5%. Also, for some users (e.g., U4 and
U10), the top-250 accuracy can reach 100%. In the cafeteria, the users
obtain a top-25 accuracy in the range of 41.9% to 67.8%. Meanwhile,
the average top-100 and top-250 accuracy across all users are 83.8%
and 95.6%, respectively. Particularly, some users (e.g., U15 and U19)
can also obtain a top-250 accuracy of 100%.

Security Inequity: Figure 16 presents the corresponding Gini
coefficients. We observe that all Gini coefficients are above 0.36,
confirming conclusively that our attack leads to severe security
inequality among different PINs or SSNs. Also, in the same environ-
ment, the Gini coefficients for the 9-digit SSNs are slightly larger
than that for the 6-digit PINs for most users. This appears because
the 3-digit area codes of some selected SSNs may disclose enough
information that it becomes significantly easy to break those SSNs.

7 DISCUSSIONS
7.1 Limitations
Typing with TwoHands or Multiple Fingers:Our attack targets
the most common scenario when the user types with one same
finger of a hand. Occasionally, people may use both hands to type or
change typing fingers while typing. In such cases, CSI waveforms
associated with typing the same key may differ, and the correlation
between flight interval and inter-key distance would be broken. As
a result, our attack may no longer work for such scenarios.

Detecting Start of Number Entering: In our scheme, the trans-
mitter constantly emits signals while the receiver continuously
estimates CSI with received signals. As keystroke-associated CSI
waveforms often show distinguishable rising and falling trends,
we use a sliding window method to identify the start of number
input. Specifically, we search for noteworthy fluctuation (i.e., the
difference between two neighboring local extrema) caused by a
keystroke in the window, which slides along the CSI time series
every an extremum. This scheme is costly. External triggers such
as a video feed could be added to our technique to improve the
efficiency of finding the start of number entering. We leave such
integration to our future work.

Numbers in User Study: Due to ethical reasons, we cannot
have participants type PINs/SSNs they actively use. The numbers
the participants select may not have good randomness, and are
not participants’ muscle-memorized own ones, possibly leading to
slower and more cautious typing. Thus, the corresponding experi-
mental results may not be a perfect representation of the real-world

scenario. To mitigate such effects, we let participants spend more
time memorizing their chosen numbers before testing.

7.2 Countermeasures
WINK exploits the spatiotemporal feature in CSI measurements to
infer keystrokes. Intuitively, to defend against such attacks, we can
stop the attacker from obtaining the correct spatiotemporal feature.
Accordingly, one straightforward defense is to randomize the num-
ber pad every digit typing, such that the disclosed spatiotemporal
feature would be obfuscated (e.g., the repetition of single-keystrokes
waveforms does not necessarily indicate the same keystrokes). This
randomization can be implemented for touch-screen number pads,
while it is not feasible for physical number pads. Meanwhile, it may
bring inconvenience for many users who get used to input numbers
using muscle memory and without any visual assistance.

A practical way to confuse the attacker is to type extra digits that
are unknown to attackers, as the attacker has to distinguish which
part of the input corresponds to the target number. However, typing
extra digits may disclose more information about the target number
and thus cause a decrease in security, as repeatedly demonstrated
in our experiments, where a longer digit sequence is not necessarily
more secure than a relatively shorter one against our attack. To
avoid being counter-productive, the extra digits and their positions
in the whole digit sequence should be carefully designed.

Let 𝑁0 denote the number of candidates for the target number
when no defense is applied, and 𝑁 represents the number of candi-
dates for the typed whole digit sequence. If typing the chosen extra
digits can guarantee that 𝑁 ≥ 𝑁0, such extra digits can be then
utilized to increase the security of the typed number. Extra digits
can be put at the beginning or end of the whole typing session to
make a user easily remember their positions. Note that the posi-
tions of these extra digits are pre-shared between the user and the
target computer system so that the system can isolate the input of
the target number from the extra digits. Suppose there are 𝐿 extra
digits. There are (𝐿 + 1) possibilities for the position of the target
number within each candidate of the typed whole digit sequence.
Thus, the attacker would obtain up to 𝑁 · (𝐿 + 1) possibilities for
the target number. Though this method may increase the efforts of
the attacker, it introduces an extra typing burden for typists and
slows down the number input efficiency.

Alternatively, we can also directly stop the attacker from obtain-
ing clear CSI data streams leveraging jamming, so that no valid
spatiotemporal feature can be extracted for inferring the typed
number. We can set up a jammer that constantly transmits random
signals over the wireless channel to prevent the attacker from sens-
ing the variation of the signal transmitted by the transmitter. As a
constant jammer that never stops is quite inefficient, we can employ
a reactive jammer instead, which initializes the jamming once the
typing is detected (e.g., [33]) and returns to the inactive mode when
the typing ends. Compared with the previous two defenses, the
jamming-based one does not require the user to change the typing
process while it requires extra cost for jamming hardware.

8 RELATEDWORK
Prior side-channel keystroke inference attacks can be mainly di-
vided into the following categories.
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Video-based: An attacker can stealthily record the typing pro-
cess and recover keystrokes through computer vision techniques,
e.g., tracking hand movement [50] or touching fingertip [61], and
analyzing backside motion of input devices [54]. Recent research
even shows that keystrokes can be disclosed via a video capturing
eye movement [12] or a video call [48]. However, the accuracy of
video-based techniques highly depends on the camera’s field of view
covering the victim, and the light condition in the environment.

Sensor-based: An attacker may use diverse onboard sensors
to infer keystrokes, e.g., motion sensors (e.g., accelerometers and
gyroscopes) and microphones. Most work (e.g., [8, 9, 13, 39, 40,
42, 56, 57]) require a supervised training process to build the cor-
relation between each keystroke and corresponding sensing sig-
nal. For example, the accelerometer on a smartphone can cap-
ture vibrations caused by keypresses on a nearby physical key-
board [42] or onscreen keyboard [8], and such vibrational signals
can be used for keystroke inferences. Also, recent research efforts
(e.g., [39, 40, 56, 57, 59]) reveal that when a user wears a smart-
watch on the wrist and types, the accelerometer or gyroscope built
within the smartwatch can track the user’s hand movement for
keystroke inference. However, to collect the sensor data, the at-
tacker has to trick the victim to install malware onto the victim’s
smartwatch. [13] does not require to pre-hack the user’s device, and
collects acoustic emanations of keystrokes through Voice-over-IP
(VoIP, e.g., Skype) calls. However, it only works when the following
two conditions are satisfied: first, the attacker and the victim join
the same VoIP call; second, the victim types in sensitive information
during the call. By incorporating the statistical constraints of the
English language, [64] utilizes unsupervised training instead.

Besides, an attacker may leverage Time Difference of Arrival
(TDoA) values to localize keystrokes (e.g., [37, 63]). However, such
techniques have three disadvantages. First, they require multiple
microphones with accurate time synchronization. Second, the vic-
tim needs to put her phone very close to the target keyboard. Lastly,
the adversary must also pre-infect the victim’s phone with malware,
so that the intercepted acoustic signals can be sent back to her.

Inter-keystroke timing based: Inter-keystroke timing may
leak information about the key sequences being typed. In exist-
ing work [3, 10, 53], a training process is necessary to build the
relationship with each key pair and corresponding inter-keystroke
timing. Our attack, though, also collects inter-keystroke timing,
it eliminates the training requirement and takes advantage of the
self-contained pattern of observed inter-keystroke timing sequence.
Besides, our attack deduces inter-keystroke timing from the inter-
cepted wireless signals. Such a method is more flexible and practical.
For example, [53] learns inter-keystroke timing from the arrival
times of SSH packets, and thus it needs to wait until the victim
launches an SSH session. [3] uses cameras to record the typing pro-
cess and extracts inter-keystroke timing from feedback on screens
in the form of characters (e.g., ∗ or •), making it difficult to attack
keyboards with no clear graphic feedback (e.g., a dim phone). [10]
extracts inter-keystroke timing from the feedback sound when
users type, and thus it must pre-install malware on the victim’s
device to record the acoustic signals.

Besides, [38] proposes user-independent inter-keystroke tim-
ing based attacks on PINs. It requires training to build a human
cognitive model, which can be trained with data not coming from

the victim. The cost of this relaxation is that [38] only works for
skilled typists who share the universal typing behavioral phenom-
ena.WINK requires no training and has no such restriction. Besides,
WINK is non-invasive, while [38] requires pre-infecting the victim’s
device with recording malware.

Wireless-based: Recently, many studies have shown the success
of leveraging wireless signals to infer keystrokes (e.g., [1, 21, 33, 36]).
Compared with other side-channel keystroke inference attacks,
wireless-based techniques have three advantages. First, wireless
signals are ubiquitous and invisible, causing wireless-based attacks
easy to set up and suspicious. Second, they are non-invasive as there
is no need to pre-install malware on the victim’s device. Third, un-
like video-based or sensor-based attacks, they do not require the
victim to be in line-of-sight or close proximity of the keystroke
inference system. However, most of those wireless-based keystroke
inference techniques ([1, 33, 36, 62]) still require a training process
to pre-label the observed wireless signal sample with the corre-
sponding keystroke. [21] removes the training process by exploring
the context correlation which is strictly constrained by spelling
and grammar of the English language, and thus it cannot be used
for inferring numbers, in which digits are usually randomly com-
bined. Also, [21] derives the inter-element relationship matrix to
represent the structure of each English word or a CSI time-series
data stream, whileWINK defines the structural vector to extract the
spatial features of a sequence of digits or single-keystroke wave-
forms. Inter-element relationship matrix and structure vector are
different data structures (i.e., binary matrix vs. integer vector). Each
entry in the matrix just indicates the relationship between two
waveforms or characters, while each entry in the vector represents
which cluster the corresponding waveform belongs to.

Another recent work [34] leverages the liquid crystal nematic
response effect under mmWave sensing to infer on-screen contents.
It requires training in two phases (content-type recognition, and
information retrieval), but the training data can be obtained from
any user. Also, many systems display nothing or asterisks rather
than the typed digits, leading [34] to fail in such scenarios.

9 CONCLUSION
We proposeWINK, a novel and practical numerical keystroke in-
ference technique, with the following advantages over previous
methods: (1) non-invasive, there is no need to pre-infect the vic-
tim’s device with malware; (2) training-free, no training is required;
(3) context-free, it does not rely on contextual information; and (4)
non-line-of-sight (NLOS), the attacker’s devices can be hidden from
the target user. The novelty ofWINK stems from identifying and
constructing the spatiotemporal correlation between consecutive
CSI measurements and typed digit sequences. Extensive evalua-
tions showWINK significantly decreases the required attempts to
infer numbers and such reduction for different numbers may vary
substantially, causing severe security inequality among different
PINs with the same length or SSNs.
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